My science/technology-related thoughts, sometimes controversial, sometimes can be based on limited knowledge base, logic can be non-perfect as well. I develop my vision in iterations. Don't take this blog as an attempt to convince anybody in anything.
Each post in this blog reflects my level of understanding of Tectonics of the Earth at the time the post was written; so, some posts may not necessarily be correct now.

02 May, 2011

Magma Transportation On The Temperature Gradient.

Why do volcano eruptions correlate with earthquakes? Which of two of the types of events are the cause and which are the consequence? Probably, one would say, crust layers collide squeezing magma up. But, really, can the collisions produce enough pressure to pump magma that high. Have a look at The East Pacific Rise, just pure magma under the Ridge, just nothing that could resemble any kind of the pump mechanism. Nothing to get collided here at first glance. New crust is getting born here out of magma, and the newborn crust is getting spread out.

The suggested concept is the next: Powered by deformations, crust propagates magma in the direction of lower temperature by the means of earthquakes, the magnitude of the earthquakes depends on many factors, among them are: amplitude and frequency of the deformations, crust characteristics, magma temperature, the value of the temperature gradient.

On the example of The East Pacific Rise, it can be Moon/Sun induced deformations on the border between the plates. The mechanism can be the next:
- When crust is stretched, its ruptures are filled with magma, when the crust is getting compressed, it can not produce the same flow of magma back, as magma had lost its temperature on heating and melting the rupture borders. The more viscous magma would try to find easier ways to escape the pressure, by, say, creating new ruptures.

This way, I believe The East Pacific Rise is being built of solidified magma.
reposted from

No comments:

Post a Comment

Popular Posts

Follow by Email

Content © 2006-2014 Sergey D. Sukhotinsky